
An Architecture for Multilevel Secure Interoperability

Myong H. Kang, Judith N. Froscher, and Ira S. Moskowitz1

&HQWHU�IRU�+LJK�$VVXUDQFH�&RPSXWHU�6\VWHPV

,QIRUPDWLRQ�7HFKQRORJ\�'LYLVLRQ��0DLO�&RGH�����

1DYDO�5HVHDUFK�/DERUDWRU\

Washington, DC 20375 USA

1 Research supported by ONR.

Abstract

As computer systems become distributed and
heterogeneous, there is strong movement in the
commercial sector to ease the problems of
interoperability and security. Many standards have
been proposed for these problems. However, the
commercial sector has not shown strong interest in
providing cost-effective high-assurance multilevel
security (MLS) solutions to the relatively small
communities (e.g., intelligence, military) that
require them.

In this paper, we introduce a practical, cost-
effective, and high-assurance secure solution for
multilevel distributed and heterogeneous
environments using COTS components. The
solution is based on an MLS architecture that
consists of commercial single-level hardware and
software, and a few specialized security devices.
We show how an MLS CORBA can be constructed
from single-level CORBAs and two security
devices; the NRL Pump and the Starlight
Interactive Link. We also introduce the concept of
MLS cooperative computing which is a way to
semi-automate distributed computing among
organizations at different security levels.

1. Introduction

Today’s distributed computer systems are connected to
large computer networks such as the Internet or
corporate Intranets. They are heterogeneous in terms of
hardware and software, applications, and programming
languages. They address the growing needs of sharing

information and resources within and across diverse
computing enterprises.

To address the interoperability problem, the Common
Object Request Broker Architecture (CORBA) was
proposed. CORBA defines how objects are distributed
across a distributed environment and how they interact.
This computing paradigm promises component-based
development, location and programming language
independence, scalability and fault-tolerance, and
software reuse. Note that the purpose of CORBA is to
develop, adopt, and promote standards for applications
in a distributed heterogeneous environment, not to
promote a specific technology.

CORBA clients send requests to servers and servers
return results. Clients do not need to know where a
particular server is located nor which server is serving
the request. An object request broker (ORB) mediates
all accesses. The ORB receives requests from a client,
finds the object implementation for the request,
transmits the request to a server, receives the output
from the server, and returns it to the client. In the
CORBA framework, each object can be both client and
server (figure 1). In figure 1, client A sends request r to
server B, and client B (since B is both a client and a
server) in turns send a request to server C to answer r.

Object Request Broker (ORB)

Client Client / Server

Object

Server

request/answer

A B C

Figure 1: Clients and servers in CORBA

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
An Architecture for Multilevel Secure Interoperability

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Security is an important issue in distributed computing
because extensive communication between a client and a
server, which may be located across enterprises, is
necessary. There are many kinds of security concerns
such as the integrity and confidentiality of information,
the accountability of users, and the availability of
information and resources. To address these concerns,
CORBASecurity [11] specifies security functionality
such as identification and authentication (I&A), access
control, auditing, the security of communication
between objects, non-repudiation, and the administration
of security information.

One important problem that CORBA does not solve is
the portability of applications in a distributed computing
environment. Recently, the Java programming language
on Java virtual machines was introduced. The Java idea
has gained popularity among software developers and
Internet content providers because both the software
development and maintenance costs, and the cost for the
clients to access services, can be reduced substantially.
For example, if a service provider provides a Java applet
that can communicate to server applications, end users
who have Java-enabled Web browsers can download
applets and related libraries dynamically and utilize the
service. In this way, the service providers have a much
lower burden for software maintenance, update, and
distribution. In addition, the end users (i.e., clients) do
not need any special software or hardware except a
Java-enabled Web browser.

Since the applets, which can be downloaded from
remote sites, may have potentially insidious behavior,
significant efforts were made to provide reasonable
security. For example, digital signature for applets and
“sand box” security restrict the ability of untrusted
applets that are running on Web browser.

Both CORBA and Java are attractive ideas for
distributed computing for both the commercial and
government sectors. Currently, there are substantial
efforts to combine these two approaches. Since both
approaches are so popular, CORBASecurity and Java
security features are very important aspects for end users
and developers. However, a security aspect that neither
CORBASecurity nor Java security address is high-
assurance multilevel security (MLS). High-assurance
MLS has never been a primary security concern for the
commercial sector, and we believe this lack of interest
will continue for some time. Therefore, cost-effective,
high-assurance MLS systems will not be available from
the commercial sector in the near future. However, there
are communities (e.g., intelligence and defense) that
need high-assurance distributed MLS solutions today.
To address high-assurance MLS in a distributed
computing environment, NRL has started the Distributed

Object Security Architecture (DOSA) project. The
purposes of this project are

1. to introduce a high-assurance MLS distributed
architecture for multilevel secure interoperability,

2. to ensure that MLS users will be able to use the
most advanced commercially available information
technology as well as legacy resources securely and
affordably,

3. to examine existing security technologies and to
recommend how they can be used in the MLS
distributed computing framework, and

4. to identify additional security mechanisms or
computing paradigms that need to be developed for
distributed high-assurance MLS computing.

The rest of the paper is organized as follows. We
introduce a generic multilevel security model for
enterprises in section 2. We then introduce our approach
to solve MLS information management requirements in
section 3, especially the architectural side of our
approach. Section 4 discusses how MLS cooperative
applications can be organized in MLS distributed
environments. We present the status of our prototype
effort and a specific example of our approach in section
5. Section 6 contrasts our approach to a few proposed
approaches to meet MLS distributed requirements. We
summarize this paper in section 7.

2. Multilevel Secure Enterprise Model

Enterprises need to protect their computing assets (i.e.,
information and resources) from perceived threats. This
can be achieved by establishing protection domains [10]
that contain groups of related components. Protection
domain boundaries can be enforced by both physical
and logical separation. Protection domains can be
organized as hierarchies (levels) of protection domains.
For example, a protection domain, P1, may contain two
protection subdomains, P11 and P12 so forth. Both P11
and P12 are governed by the protection policy enforced
for all of P1. Components within the smallest protection
domain are assumed to trust each other and have no
need for security services. Using this protection domain
concept, we can define several security models.

The multilevel secure enterprise model is based on the
principle of multilevel security, which can be stated as
follows:

(1) the enterprises determine the levels of
trustworthiness (clearances) for their users,

(2) information is marked with a sensitivity label, and

(3) access control decisions are made based upon the
level of user’s trustworthiness and the sensitivity of
the information.

Traditionally, an MLS computer system has a specific
access policy that is based on a widely accepted
information security policy. This policy can be
summarized as “no high level information is allowed to
pass to lower level users/processes and lower level
information should be available to higher level
users/processes” (e.g., Bell-LaPadula policy (BLP)).
This is graphically illustrated by the diode symbol.
Figure 2 illustrates secure enterprise model with two
security levels.

Communication to/from
outside of enterprise
at the low level

Communication to/from
outside of enterprise
at the high level

Protection
domain A

B
C

Security boundary

Figure 2: Two-level secure enterprise model

There are two important points to observe in the above
example:

• There are various threats at each protection
boundary. Different protection mechanisms such as
discretionary access control (DAC), domain and
type enforcement (DTE) [2], firewall or ORB
gateway, and cryptographic techniques for
identification and authentication (I&A), non-
repudiation, and secrecy of communication across
protection boundary are needed for effective
security.

• There are various strengths of protection
mechanisms. A smaller protection boundary in
figure 2 does not necessarily imply a weaker
protection boundary. For example, some
department protection boundaries (which are
smaller boundaries than the enterprise protection
boundary) may deploy stronger protection
mechanisms than that for the enterprise protection
boundary.

Hence, it is important for the security designer to
understand the various threats against each protection
domain and choose the correct security mechanisms
with the right strength for the respective protection
boundary.

An enterprise may consist of geographically distributed
protection domains so that a single Intranet no longer
suffices. In this case, some distributed protection
domains may form a virtual protection domain through
protected communication links (either by physical
protection or by cryptographic techniques)2. Hence, we
can easily extend figure 2 to a multilevel secure virtual
enterprise computing model as in figure 3.

Again, distributed portions of a virtual domain need a
secure communication protocol among them. In the
following sections, we concentrate on how this
multilevel virtual protection model can be realized.

AA

Figure 3: Two-level virtual enterprise model

3. DOSA (Distributed Object Security
Architecture)

Information systems exist to enable users to access and
manage information. Hence an MLS information
architecture should answer the following two questions.

• How can a user access globally distributed data
based on their clearance and need to know without
leaking information?

• How can a high-level user integrate information
from various locations at different security levels
using (multilevel or single-level) applications
without introducing security vulnerabilities?

Hence, throughout this paper, we try to answer the
above two questions in DOSA and for the traditional
MLS approach.

A practical way to achieve multilevel secure
interoperability is to compose single-level distributed
systems that enforce domain security policies to provide
multilevel functionality in a secure way (i.e., the

2 Interoperability models of CORBASecurity 1.1 (chapter 8)
address the possibility of this configuration.

multiple single level (MSL) approach). Our solution is
based on the following observations.

1. When information at lower security levels is located
on another system in a distributed computing
environment, a read-down becomes a write-down
because a request must be sent to the ORB, which
must send a message to the lower level system; this
violates the security policy. Automatic ways to
generate requests and send them to other systems at
lower security level are vulnerable to Trojan Horse
attacks.

2. Information in distributed (non-MLS) systems is
often replicated to other systems to enhance
performance and increase availability.

3. A copy of the same application or information can
reside in systems at many different security levels.
But, in general, the users at different levels of
trustworthiness (clearances) do not sit side by side
in the workplace. The levels of trustworthiness
usually determine the security level of the enclave
in which users reside and access information.

For example, DoD’s current operational infrastructure
consists of several physically separate networks,
operating at different system-high levels. Users working
at different security levels need access to information
and services at lower security levels (i.e., in a separate
network). To achieve secure interoperability within this
infrastructure requires strong control of information
flow across physical security boundaries. Our approach
aims to use this infrastructure as the foundation for an
MLS architecture that consists of single-level CORBAs
(i.e., at least one ORB per security level). From a system
of systems perspective, this approach produces an MLS
system consisting of multiple single level (MSL)
systems. MLS client-side and server-side solutions, that
make low information and services available securely to
high level users and applications, control the flow of
information across security boundaries.

Architectural Overview

The MLS server-side solutions are SINTRA (Secure
INformation Through Replicated Architecture) [5, 7]
and the NRL Pump [6, 8, 9] both from the Naval
Research Laboratory (NRL). NRL has demonstrated the
effectiveness of physical separation to provide security,
and replication for information sharing in several
SINTRA relational database prototypes. Also NRL’s
efforts produced a one-way store-and-forward device,
the NRL Pump, to enable secure and reliable
communication from a low security level system to a
higher level system.

The advent of asynchronous messaging and
asynchronous replication servers for databases have
made the SINTRA approach, in conjunction with the
NRL Pump, quite tractable. Communication from a low
security level to a higher level does not introduce
security vulnerabilities; however, information flow from
high to low is prohibited. In other words, asynchronous
communication from a low security level to a higher
level can be allowed in an MLS environment if all
responses from high to low are blocked. Commercial
availability of asynchronous communication services in
general allows this approach to be used for making low
information available to high systems and applications.
In other words, the NRL effort has produced an MLS
server that uses COTS products with a small security
device, the NRL Pump, that enables the untrusted
applications at high-level systems to access lower-level
information securely as shown in figure 4.

 LOW

HIGH

NRL Pump

Figure 4: An MLS server that consists of COTS
products and the NRL Pump

Some lower level information that is regularly used by
higher level applications can be replicated from the
lower level to the higher level systems. However, there
is some unpredictable information that is needed by
higher level users from time to time. Also sometimes,
the volume of information prohibits replicating all lower
level information to high level systems. One way to
accommodate these needs is to equip the high-level
users with high-assurance MLS workstations for
accessing lower-level resource.

The Australian Defense Science and Technology
Organization (DSTO) has developed a security device,
(Starlight) Interactive Link [1]. This device allows a
user of a COTS X Windows workstation to redirect the
output of his keyboard to login to lower level servers to
browse, send messages or have data sent to the higher
enclave for future analysis. Throughout this paper, a
client workstation that is enabled with this Interactive
Link is called a Starlight-client. For example, a user in a
Secret enclave could establish a connection to
unclassified and send email or browse the Internet (see

figure 6). The Australian effort has produced an MLS
client that uses COTS products with a small security
device that enables MLS connectivity for high-level
users. In other words, a high level user can establish
simultaneous connections to systems at many different
security levels through Starlight interactive link.

Our overall approach is to develop an MSL CORBA
with conventional (system-high single-level secure)
ORBs running at each security level to provide overall
MLS services. The NRL Pump can be configured as a
CORBA object and multilevel clients (e.g., Starlight-
client) can be configured as CORBA clients. Of course
if the Starlight-client is located at levelj, then the highest
security level of the multilevel workstation is levelj.
CORBA asynchronous communication services (e.g.,
OrbixTalk) in conjunction with the NRL Pump can send
information from low level systems to high level
systems. In such cases, the NRL Pump must have
interfaces for CORBA’s asynchronous communication
services (see figure 5).

Pump

Pump

ORB (Medium)

ORB (High)

ORB (Low)

Srv

C

C

Srv

Srv

C

C

Srv

: single-level client

: multilevel client (e.g., Starlight-client)

: single-level server

Figure 5: Overall approaches of CORBA-compliant
MSL

The architecture-based security shown in figure 5
provides strong separation that can protect against
catastrophic security problems. Other security
mechanisms, such as firewalls and CORBA gateways
can be easily integrated into the above architecture
(between enclaves or between ORBs) to ensure that only
authorized users have access to resources within an
enclave. Encryption, intrusion detection, role-based
access control, type enforcement mechanisms, and other
need-to-know discretionary access control mechanisms
and Java security also play important roles in protecting
information both within and between physically separate
enclaves. The ability to take advantage of single-level
distributed computing functionality and to develop
mission critical applications independent of security

solutions makes this approach extremely attractive for
near-term operational use.

Advantages of the MSL approach are as follows.

• It is a sound framework for balanced assurance that
can adopt strong and weak security mechanisms at
the appropriate protection boundaries. Hence, it is
easier to build high-assurance systems.

• It isolates security enforcement into simple
mechanisms. Therefore, it enables the use of
existing security mechanisms and the development
of operational solutions independent of security
solutions.

• It enables the secure use of unmodified COTS client
and server products and the use of new protocols.
This facilitates migration to new standards,
exploitation of technology advances, and reduces
training, maintenance and system cost.

The Starlight-client in CORBA Environments

Adapting the Starlight-client to a CORBA environment
poses no problem. To understand why CORBA does
not affect the Starlight-client, we need to understand
how the Starlight-client works. The Starlight-client,
which uses the X window system, works as follows:

Starlight
Interactive

Link

Low side
proxy

X server

High side
proxy

X client

Low side
X client

High side
X server

High side
X client

. .

High
Network

Low
Network

Figure 6: The Starlight-client

In figure 6, the X client is a user program or application
(e.g., Netscape) that knows how to talk to the X server.
The X server is a local program that controls display
resources. In other words, the X server also acts as a
mediator between X clients and the resources (e.g.,
windows, cursors, fonts) of the local system.

The goal of the Starlight-client is to run any X client
(i.e., application) on the low network but display low
output on the high network. To achieve this goal, in
general, low X client, high X server, and bi-directional

communications between them (e.g., display geometry,
color support) are necessary. However, the data diode in
the Starlight interactive link does not allow any
communication from the high side to the low side.
Therefore, the Starlight-client uses a high-side proxy X
client and low-side proxy X server to mimic the real
low-side X client and high-side X server.

In a CORBA environment, High and Low networks in
figure 6 can be replaced with High and Low ORBs. In
that case, Low and High X-clients should be CORBA-
enabled X-clients. It is not too difficult to construct
ORB-enabled X-clients. One such example is ORB-
enabled applets running on X-window based Web-
browsers.

The NRL Pump in the CORBA environment

The NRL Pump is an one-way device that delivers
messages from Low to High. It is designed to be:

• an application independent device,

• used in conjunction with unmodified COTS
applications that support asynchronous
communications.

High
App 1

NRL Pump
Low

App 2
High
App 2

Low
App 1

Low
Wrappers

High
Wrappers

Figure 7: A typical configuration of the NRL Pump

In a typical NRL Pump configuration (figure 7), the low
level to high level communication is actually a
communication between application programs running
on a lower level computer (sender) and application
programs running on a high level computer (receivers).
Note that application programs that expect some data
values coming back as a result of computation cannot be
used with the NRL Pump because the NRL Pump does
not allow data values to pass from High to Low.
Therefore, the application programs that can utilize the
NRL Pump are those which can function with ACKs (or
no ACKs) from the receiver program. In our SINTRA
prototype, we were able to use the NRL Pump with the
Sybase replication server that requires a little more than
just ACKs (e.g., last commit ID) by generating the
required information without actually accessing the
Sybase SQL server that is located on the high side [3].

In general, an application program (i.e., sender) that
functions with ACKs is able to ensure reliability at the
application level by receiving ACKs from the receiver in

the specific format determined by the application
protocol. If the sender program directly sends a message
to the NRL Pump, the NRL Pump, which is an
application independent device, cannot return an ACK
in the format specified by the application protocol.
Therefore, wrappers, which are application-specific, are
needed to ensure the correct formatting of application
ACKs. In other words, wrappers satisfy both the
application-specific protocol and the NRL Pump
protocol.

Previous work [3] demonstrates that the NRL Pump
works well with COTS applications such as database
replication servers and FTP. However, in a CORBA
environment, we want to demonstrate how the NRL
Pump works with applications that use CORBA style
communication. The CORBA specification mainly
focuses on a synchronous programming model3. One
CORBA service that provides asynchronous
communication is the event service. OMG plans to
provide more asynchronous programming models in the
near future4. Since the event service is intended to
deliver events not messages, some implementations may
not be able to handle long messages (i.e., the time and
capacity limits of storage may not support large
messages).

We chose OrbixTalk5 as our first CORBA style6

application that will be incorporated with the NRL
Pump because

• it provides asynchronous messaging functionality,
and

• it is a basis for a range of application areas, such as
multicasting and event-driven programming,

• it is the basis for the Orbix event service that is an
implementation of CORBA’s event service. Hence,
the suppliers, consumers, and event channel of
CORBA’s event service directly correspond to the
talkers, listeners, and network of OrbixTalk (see
figure 8).

OrbixTalk in conjunction with the NRL Pump will
provide a capability for multicasting and event services
across security boundaries. It is important to support

3 A client sends a request to a server and waits for the reply
from the server.

4 Recently, the Object Management Group (OMG) issued a
RFP for an Asynchronous Messaging Service.

5 OrbixTalk is trademark from IONA Technologies Ltd.

6 Only contract between client and server applications is
interface definitions in CORBA IDL.

event-driven programming and multicasting across
security boundaries because they are popular paradigms
in distributed computing environments. For example,
situation changes at lower levels that can trigger/alert
higher level activities can be programmed in an event-
driven model across security boundaries.

OrbixTalk de-couples talkers (i.e., message generators)
and listeners (i.e., message receivers), and forms an uni-
directional (asynchronous) message stream. In general,
m talkers can talk to n listeners through a single message
stream. Also the talker does not have explicit knowledge
of listeners and the listener does not need to know about
the talker. OrbixTalk allows shared information to be
organized according to topics. The talker simply
specifies the topic it wants to talk about and sends out
messages, and a listener specifies the topic it wants to
listen to and receives messages.

Of course, an OrbixTalk implementation introduces
some bi-directional communication. For example,
OrbixTalk maintains a service that translates topic name
to IP addresses through the “directory enquiries server”.
This server communicates to both talkers and listeners.
However, OrbixTalk in conjunction with the NRL Pump
will produce a secure reliable one-way channel. One
method to implement OrbixTalk across security
boundaries is shown in figure 8.

Talker OrbixTalk
Network

Listener

Pump

Low
wrappers

High
wrappers

Topic name1

OrbixTalk
Network

Listener

Topic name2 Listener

OrbixTalk
Network

Topic name1

OrbixTalk
Network

Topic name2Talker

Talker

Event Channel ConsumersSuppliers

Figure 8: A simple configuration of the NRL Pump and
OrbixTalk where the dotted boxes represent CORBA’s

event service.

In the above scheme, a low wrapper is a proxy for
listener(s) that represents potentially many high
listeners. There may be one low wrapper per topic or
one low wrapper for many topics. High wrapper is a
proxy for talker(s) that potentially represents many low
talkers. In the above scheme, low talkers talk without
knowing that there are high listeners. The high
administrator can set up low wrappers (i.e., register for
topics that are of interest to the high listeners) through a
Starlight-client.

Combining the NRL Pump and the Starlight-
client in the CORBA environment

As we saw in the above, the NRL Pump, Starlight-client,
and CORBA are similar in that one side has a client

(sender) with a server (receiver) proxy, and the other
side has a client (sender) proxy with a server (receiver).
All three components can be configured as follows: the
NRL Pump resides between server-side applications,
and the Starlight Interactive Link resides between X
clients. In other words, the two security devices connect
ORBs at different security levels to form an MLS
CORBA.

Note that our approach is different from other
distributed MLS approaches (see section 6) in that our
approach realizes a distributed MLS system by
composing multiple single-level system-high systems
with a few security devices (e.g., NRL Pump, Starlight-
client). Our approach successfully provides

• a way for users to access globally distributed data
based on their clearance and need to know through
MLS workstations (e.g., Starlight-client) and

• a mechanism for a high-level user to integrate
information from different locations at security
levels through replication of lower level information
to higher level systems via one-way devices (e.g.,
NRL Pump).

4. MLS Collaborative Computing

We have introduced a distributed MLS architecture that
is cost-effective, practical, and secure. However, a
distributed architecture alone cannot meet the needs of
users in distributed environments. What we need is a
new MLS distributed computing paradigm that can help
users at different locations and at different security
levels cooperate. Users may independently work on
activities that together provide a solution for some
enterprise level problem without knowing details about
the problem. These activities combine to support the
enterprise business processes. Ad-hoc collaboration (by
arbitrarily exchanging files or e-mail) does not satisfy
the information management needs of enterprises.
Global information management strategies based on a
sound distributed architecture are the foundation for
effective distribution of complex applications that are
needed to support ever changing operational conditions
across security boundaries. In other words,

• distributed information management activities
should be defined,

• these activities should be distributed to the
appropriate organizations at the right security
levels, and

• administrators should be able to control and
monitor those activities.

For some time, enterprises have described their
activities as collections of business processes and have
tried to streamline those processes within a single
security level. Modeling business dynamics as a set of
processes has allowed enterprises to use information
technology more effectively. A workflow management
system (WFMS) assists users in managing dependencies
among activities and monitoring business processes.

To enable enterprises that need to perform activities
across security boundaries, an MLS workflow based on
the architecture that was described in section 3 is
needed. MLS WFMSs can support strategic and tactical
planning processes, weapons acquisition processes,
travel arrangement processes, distributed simulation
administrative processes, command and control, mission
planning, and logistic processes. These activities may
take place at different security levels, and the data that
the activities require may be classified at different
security levels. Therefore, when the activities that make
up these processes are incorporated into an MLS
workflow, not only their functional dependencies but
also their security constraints must be considered.

To develop MLS WFMSs, several types of tools that
support and enforce the MLS security policy will be
required. Tools for analyzing the dependencies among
activities at different security levels support workflow
design. An activity can be performed in many systems
by many people (some site or activities may be preferred
to other sites or activities) in a WFMS. Hence, a WFMS
may need some scheduling scheme that can avoid failed
and overloaded systems, and consider the preferred
route without violating MLS constraints. Activities may
be triggered by prior activities at different security levels
or dynamically changing situations (potentially from a
different security level). Each activity may need to
report its current condition to a workflow monitor; they
may also need to pass information from one activity to
others. To support MLS workflow on an open object bus
(e.g., CORBA), asynchronous messaging schemes (e.g.,
asynchronous multicasting) are needed in order to start
activities at different security levels. A pragmatic and
secure initialization process must be developed.

MLS WFMSs require MLS distributed information
management schemes. In particular, they need long-
lived, flexible, heterogeneous MLS transaction models
that manage diverse operations in heterogeneous
computing environments across security levels. A
WFMS requires recovery mechanisms in case of a
system failure. They need a scheme that can recover
across heterogeneous environments and that can recover
from the fail point; this type of recovery is known as
forward recovery.

As mentioned above, MLS workflow activities need to
send messages to the workflow monitor or to other
activities at the same or higher security levels. Activities
need to verify the authenticity and integrity of messages
that they received. In some cases, secrecy of messages
must be preserved. Cryptographic techniques for
authentication, integrity, and secrecy among activities at
the same security level are well known. However, those
techniques need to be extended to support
authentication, integrity, and secrecy among activities
across the different security levels.

The key to the success of our efforts is maximum use of
unmodified COTS CORBA-compliant clients and
servers. This will facilitate the migration to new
Information Technology (IT) standards, the exploitation
of technology advances, and the reduction of training,
maintenance, and system cost. CORBA, Java, and
DOSA will be the foundation for MLS collaborative
computing. As a first step toward this new computing
paradigm, we prototyped an MLS CORBA that is
described in section 5.

5. MLS CORBA Prototype

CORBA promises language and platform/OS
independence among applications in a distributed
environment. To demonstrate that the CORBA promise
can be extended to MLS environments, we have built a
prototype that uses two hardware platforms (SUN and
PC) and two operating systems (Solaris and
WindowsNT), two programming languages (C++ and
Java), and Orbix/OrbixWeb7. To support multi-level
event-driven programming and multicasting across a
security boundary, we also incorporate OrbixTalk in
conjunction with the NRL Pump.

The hardware configuration of our prototype is shown in
figure 9.

Pump

Client side Server side

Starlight
Interactive
Link

Network (High)

Network (Low)

HIGH

LOW

SUN/
Solaris

SUN/
Solaris

PC/
WindowsNT

PC/
WindowsNT

PC/
WindowsNT

Figure 9: Hardware configuration of the prototype

7 Orbix is a C++ implementation of the CORBA and
OrbixWeb is a Java implementation of the CORBA.

In the client side, we have two different types of
hardware (see figure 9) and two different sets of
software. The client software on a PC/WindowsNT is
CORBA-enabled Java client applications. Hence,
OrbixWeb is required on that platform. The
SUN/Solaris platform is equipped only with a Java
enabled Web browser. Hence, CORBA-enabled Java
applets (i.e., client applications) and related CORBA
libraries should be dynamically downloaded from a
server. Thus the two approaches are distinguished by
one being statically CORBA-enabled and one being
dynamically CORBA-enabled.

These approaches have their pros and cons. If each
client is equipped with CORBA-enabled client
applications (e.g., our PC/WindowsNT client), it
reduces the download time. However, whenever the
client application is updated, a new version has to be
distributed and loaded to the system. Also each client
may have to be equipped with the CORBA library. On
the other hand, if the clients are equipped with a Java
enabled Web browser and download CORBA-enabled
client applets, then updating and distributing the client
programs is much easier (especially for roaming clients).

Our servers are written in C++ and Java, running on a
PC/WindowsNT platform. Lower level servers are also
equipped with OrbixTalk for asynchronous message
delivery from low level applications to the low Pump
wrapper. Since low level servers replicate messages
through OrbixTalk, the low level servers can be very
generic (i.e., they do not have to know where the
messages have to be delivered). All they have to do is to
publish their results for any processes that are interested
in them.

The process architecture of our prototype is shown in
figure 10. The location of each process is
straightforward except for the Pump wrappers. The
wrappers can be located in any server platform. Note
that we may have different wrappers for different
applications.

Pump

 Client side Server side

ORB (High)

ORB (Low)

HIGH

LOW

OrbixWeb
enabled

Java client
on

WindowsNT

Java enabled
Web-browser

on Solaris

Java enabled
Web-browser

on Solaris

OrbixWeb
enabled

Java server
on

WindowsNT

OrbixWeb
enabled

Java server
on

WindowsNT

Orbix and
OrbixTalk
(Talker)
enabled

C++ server on
WindowsNT

Orbix and
OrbixTalk
(Talker)
enabled

C++ server on
WindowsNT

Orbix
enabled

High
wrapper
(C++)

OrbixTalk
(listener)
enabled

Low
wrapper
(C++)

Starlight
Interactive

Link

Figure 10: Process configuration of the prototype

At this time, our prototype uses regular ORBs.
However, once CORBA security services are available,
we plan to incorporate them into our prototype.

6. Traditional Approach to MLS Security

The approach we have taken in the DOSA project is
quite different from the traditional TCSEC approach to
MLS computing and may seem too good to be true. In
this section, we contrast the DOSA approach to other
traditional distributed MLS approaches.

When early security experts first introduced the concept
of a trusted operating system and a trusted computing
base (TCB), computers were a very costly resource and
only very talented, highly trained technologists
interacted with them. Building high assurance trusted
operating systems became the primary goal for the MLS
community. It was quite difficult and expensive to
build these trusted operating systems and very hard to
gain the necessary assurance that the trusted software
enforced the security policy. At this time, the
government’s share of the information technology
market was dominant.

With the introduction of the personal computer,
computing power became more affordable for the
common person. Today’s computing resources are
examples of a commodity whose cost has dropped while
the capabilities of the products have increased over time.
The government’s share of the IT market is less than
10% today; hence, its ability to influence commercial IT
products has become less. The computing model has
also changed to a distributed object model.

MSL is more affordable, primarily because it promotes
the use of commercially available products with a few
simple specialized security components to enforce
strong separation required by national MLS policy.
User expectations to have the latest IT advances on their
desktop can be realized, as well as access to legacy

resources. MSL facilitates the development of mission
critical applications without having to address security
restrictions imposed by special-purpose MLS operating
systems. Traditional MLS approaches attempt to
emulate evolving technology but do not keep up with
rapidly evolving IT advances.

The MSL approach provides very strong separation and
completely obviates a solution for the traditional
assurance composition problem. Because users at
different security levels access different copies of lower
level information, traditional Trojan Horse attacks are
not effective in a strict MSL approach (i.e., only upward
flow is allowed). The need for downgrading introduces
a vulnerability that malicious code can exploit. The
protection afforded by the MSL approach is so effective
because it minimizes resources shared across security
levels.

The MLS community takes the Trojan Horses threat
seriously. Trojan Horses can hide in untrusted software
at different security levels and leak information from a
higher to a lower level. Traditionally, the MLS
community deals with this threat by

1. isolating single-level (untrusted) information and
processes from those of different security levels

2. restricting write-down capability (i.e., only trusted
processes can write-down when it is necessary).

An MLS operating system mediates access to a shared
memory by users at different security levels. High level
users or applications access lower level information via
a read-down mechanism. A read-down mechanism is
allowed because lower level applications/data cannot
tell when the higher level applications/users read its
information; hence, a lower level Trojan Horse cannot
receive any information. Most MLS systems enforce
BLP.

High-level
users

Medium-level
users

Low-level
users

High

Medium

Low

M
L
S

O
S

T
R
U
S
T
E
D

S
O
F
T
W
A
R
E

Figure 11: A traditional MLS system

In figure 11, high level users and applications can access
and integrate lower level information through read-down
mechanisms that are performed via an MLS operating

system (OS). Trusted software can allow processes to
read from and write to multiple security levels.

However, the read-down approach for accessing
information from many security levels may leak
information when the lower level information is located
in different systems. If all computing systems in the
distributed environment are MLS systems, they all have
the same assurance level, and they all mediate access
across the same security range (e.g., Top secret to
Confidential), then it may be protected from Trojan
Horse attacks. However, this is a very unlikely scenario
in today’s heterogeneous and distributed computing
environments because

(1) it is inevitable that information from unclassified
network will be accessed, and

(2) excellent COTS (untrusted) products, in terms of
functionality, user interface, and cost, are available
(i.e., it is too attractive not to use them).

To overcome the read-down problem in MLS distributed
environments, other schemes have been proposed [4]
(see figure 12).

High

Medium

Low

M
L
S

O
S

An MLS system

High Network

Medium Network

Low Network

Single-level
systems

T
R
U
S
T
E
D

S
O
F
T
W
A
R
E

Figure 12: A distributed MLS system

In this approach, MLS systems are used as a mediator
between users/processes at different security levels.
When higher level users/applications need to access
lower level information on other systems, the request for
the information is sent down through the MLS
OS/applications. Sending a high-level request to a lower
level system is a write-down operation that violates
BLP. Even though the MLS OS, MLS applications, and
users are all trusted, it is not easy to tell what other
untrusted processes are between the user and the trusted
software. For example, when a user accesses an MLS
database system, he/she usually does so through a
graphical user interface (GUI) tool. It is very difficult to
determine whether there is any other process that may
reside between the GUI and the MLS database. In
addition to building the trusted software, it is very
difficult to establish a trusted path between the user and

the trusted process, and between trusted processes in
today’s multi-tier software architecture.

For these reasons, a high-assurance MLS ORB (if one is
ever built) or MLS OSs cannot solve the secure
interoperability problem. A high-assurance MLS ORB
residing on an MLS operating system to enforce the
non-by-passable property will inherit all the security
vulnerabilities of the above approach.

7. Conclusions

In this paper, we have demonstrated a practical way to
achieve multilevel secure interoperability through the
MSL approach, which constructs MLS distributed
systems from multiple single-level, distributed systems
in conjunction with a few specialized security devices. A
generic MLS distributed architecture is shown in figure
13.

Pump

Switched
workstation

High Network

Low Network

Downgrader

Figure 13: A generic MLS distributed architecture

In this architecture, switched workstations (e.g.,
Starlight) enable high-level users to access lower-level
resources, one-way devices (e..g, NRL Pump) provide a
secure way to replicate lower-level information for
higher-level applications and users, and downgraders
provide capability to violate the security policy for
trusted software. We emphasize that downgrades should
be performed locally by an authorized data owner. The
philosophy of this architectural approach to MLS
computing is to minimize the need for downgrading.

In this paper, we also described our prototype efforts to
illustrate that cost-effective high-assurance MLS
distributed solutions are possible. Our prototype,
constructed from single-level ORBs, not only
demonstrates a practical distributed MLS infrastructure
but also shows how to manufacture MLS event-driven
programming and multicasting from single-level
counterparts.

Thus far, our effort in the DOSA project has
concentrated upon setting up an MLS infrastructure for
distributed applications. This is an important first step
toward distributed MLS cooperative computing (e.g.,
MLS Workflow) running on the MLS infrastructure.

MLS cooperative applications are a key to the success of
MLS distributed computing.

References
1. Anderson, M., North, C., Griffin, J. Milner, R.,

Yesberg, J., and Yiu, K. “Starlight: Interactive
link,” 12th Annual Computer Security Applications
Conference, San Diego, CA, 1996.

2. Boebert, W. E. and Kain, R. Y. “A practical
alternative to hierarchical integrity policies,”
Proceedings of the 8th National Computer Security
Conference, Gaithersburg, MD, 1985.

3. Froscher, J. N., Goldschlag, D. M., Kang, M. H.,
Landwehr, C. E., Moore, A. P., Moskowitz, I. S.,
and Payne, C. N. “Improving inter-enclave
information flow for a secure strike planning
application,” Proceedings of 11th Computer
Security Applications Conference, pp. 89 - 98, New
Orleans, LA, 1995.

4. Jensen, C., et. al. “SDDM: A prototype of a
distributed architecture for database security,”
Proceedings of Conference on Data Engineering,
1989.

5. Kang, M. H., Froscher, J. N., and Costich, O. “A
practical transaction model and untrusted
transaction manager for multilevel-secure database
systems,” Proceedings of 6th Annual IFIP WG11.3
Working Conference on Database Security, pp. 289
- 310, 1992.

6. Kang, M. H. and Moskowitz, I. S. “A Pump for
rapid, reliable, secure communication,” Proceedings
of ACM Conference on Computer &
Communication Security, pp. 119 - 129, Fairfax,
VA, 1993.

7. Kang, M. H., Froscher, J. N., McDermott, J.,
Costich, O., and Peyton, R. “Achieving database
security through data replication: The SINTRA
prototype,” Proceedings of 17th National Computer
Security Conference, pp. 77 - 87, Baltimore, MD.
1994.

8. Kang, M. H. and Moskowitz, I. S. “A data Pump for
communication,” NRL Memo. Report 5540-95-
7771, 1995.

9. Kang, M. H., Moskowitz, I. S. and Lee, D. C. “A
network Pump,” IEEE Transactions on Software
Engineering, vol. 22, no. 5, pp. 329 - 338, 1996.

10. Moskowitz, I. S. and Kang, M. H. “An Insecurity
Flow Model,” Proceedings of New Security
Paradigms Workshop, Cumbria, UK, 1997.

11. Object Management Group “CORBA Security,”
OMG document 97-02-20, 97-02-21, 1997.

